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Abstract—Recent advancement in computer vision techniques
have led to a surge in deep fake videos and images flooding.
Deep fake is a term coined to represent fake images generated
using deep neural networks. These videos and images can have
a profound impact on world politics, stock market and personal
life. With this paper, our team summarizes past work in this field
and then focuses on creating a network architecture to classify
these deep fakes.A CNN architecture is implemented and trained
and many insights into the problem of deep fake classification
are discussed.

Index Terms—Deepfakes, Deep Learning, Fake Videos, Deep-
fake Detection,

I. INTRODUCTION

Social engineering is the planned manipulation of societal
behavior, and has been around for as long as people have been
able to communicate with each other. As the information age
has progressed, it has become easier and easier to reach a
larger audience. From the invention of writing, the wide spread
use of printing, and now to a modern, digitally connected
society; the ability to spread information has become easy
and nearly instantaneous. With these changes in the rapid
availability of information, one must now, more than ever, have
a way to figure out what information is true and what is false.

Reliability theory states that the three most important as-
pects of information are its confidentiality, its availability and
its integrity. Social engineering typically uses information that
is released publicly (i.e non-confidential) and highly available
through digital means such as the internet and social media.
It is the difficult task of determining the integrity of the data
that is often left up to the individuals who come in contact
with the information.

With so many organizations trying to manipulate social
perception and behavior, quite a bit of pressure is being
put onto tech companies to minimize the amount of fake
information that is being shared via their platforms. While
this is certainly an aid to the minimizing the problem, the
individuals who come in contact with the information still
have a responsibility to determine what they will believe.
Often individuals will base their believing of the integrity
of information off of the source of the information and the
people who provide it. For video and audio content, often this
is done based off the visual or audible recognition of someone
in the media, but what if you can no longer use your vision or
hearing to validate the information? What basis do you now

have to verify that piece of information is accurate? It is this
vulnerability that deepfakes, a modern social engineering tool,
seek to exploit.

Deepfakes, use deep learning to digitally create media
content that appears to both look and sound like authentic
media. The media created by these deepfakes are sometimes
easily detectable, but sometimes good deepfakes are virtually
indistinguishable from the real thing.

The potential effects of deepfakes are quite serious. Political
manipulation has emerged as one of the most serious types
of social engineering. A convincing deepfake video could do
damage to political candidates or cause opposing countries to
strike one another with military action. In a 2018 speech at the
Heritage Foundation, Senator Ricky Rubio gave an indication
of how serious of a threat deepfake technology is when he
said, “In the old days, if you wanted to threaten the United
States, you needed 10 aircraft carriers, and nuclear weapons,
and long-range missiles. . . . Today, you just need access to our
internet system, to our banking system, to our electrical grid
and infrastructure, and increasingly, all you need is the ability
to produce a very realistic fake video that could undermine
our elections, that could throw our country into tremendous
crisis internally and weaken us deeply.” [4]

Other uses of deepfake technology are almost endless. Fake
evidence generated for use in the judicial system could lead
to incorrect verdicts. Fake media containing non-consensual
sexual content could be quite damaging to the personal life
and career of individuals. Fake business information could be
used to manipulate the stock market.

The problem of social engineering through the use of
deepfakes is serious. This paper investigates methods of using
deep learning to classify potential deepfake content as real or
fake.

II. BACKGROUND

The recent developments in computer vision and image
processing algorithms have turned out to be a double-edged
sword, bringing about remarkable augmentation in machine
capabilities but concomitantly raising questions of morality
as well. They have made significant contributions in a multi-
tude of fields such as cancer detection, autonomous vehicles,
augmented reality and state of the art surveillance systems.
However, they have also become tools for generating fake
digital media to a strikingly realistic degree which poses a



great threat on various levels. A new term has been coined to
represent such morphed videos and images, Deepfakes.

A. What are Deepfakes

Deepfakes are artificially synthesized digital media, pri-
marily in the form of images and videos, using Machine
Learning and Artificial Intelligence. A deep fake may refer
to a pre-recorded digital medium (video, image, audio, etc.)
of a real person that is morphed either partially or completely,
to synthesize an artificial subject that borrows features from
the human subject, or a completely artificial digital medium,
where every feature is autonomously computer generated
with no reference medium. Though the artificial subject has
realistic features, the probability of all its features matching
those of a single real subject is very low, per the canonical
definition. However, the artificial subject may be biased to
imbibe features from one or more human subjects based on
how the learning algorithm is trained.

Fig. 1. Fake Images using Auto Enoders

Fig. 2. Fake Images using GAN

B. How are Deepfakes generated

• Auto-encoders are known for dimensionality reduction
and compact representations of images. They are able
to form a compressed representation of images with a
minimized loss function [5][8]. An Encoder Decoder net-
work is used to generate fake images from two different
real images. A common encoder is trained to form a
compressed representation of the input images. For each
image class, a different decoder is trained to get back
the original image, or as close as possible from this
compressed representation. After the training is done, an
input image of one of the known classes is fed into the
encoder and then to a decoder, of a different class, to
generate the fake image.

• Generative Adversarial Networks are another method by
which deep fakes can be created, through two neural
networks competing against each other[12]. The first
network is called a generator, and it tries to generate
fake images. The second neural network is called a
discriminator, which tries to classify if an image is fake or
not. The feedback is fed back to the generator so it can be
trained to produce images, that can fool the discriminator.

C. Detecting Deepfakes

Since the ethical implications of deepfake algorithms gained
priority, multiple methods of detecting and classifying a given
video as being legitimate or fake have come up. The initial ap-
proaches of detection that used weak and imperfect morphing
features as indicator flags, have however been countered with
improved and more realistic deepfake algorithms, making de-
tection of deepfakes a daunting task. Some methods employed
previously include the following methods.

• The use of ’softbiometric signatures’ has been one of
the most primitive techniques used to identify deepfakes.
This method involves studying intrapersonal features of
the original subject portrayed in the video and forming a
class of implicitly distinct stochastic features such as head
motion, facial gestures and characteristics while saying a
particular phrase or while portraying a particular emotion.
This data is used to train the learning algorithm and is
then tested against videos of comedic impersonators of
the subject and against intrinsically generated Deepfakes.
A one-class SVM model is then used to distinguish the
set of features from the real subject and those from an
impersonator or a deepfake [1]. This method achieved
92% detection accuracy however, generating the softbio-
metric signatures is a highly complex and personalized
process which means each subject must have his own
training dataset. Generating such a training dataset is a
very arduous task compared to generating a deepfake,
meaning this method is quite obsolete with respect to the
speed at which deepfakes are being developed.

• Semantic inconsistencies and weakly morphed features
are another common and effective means of detecting



deepfakes. This technique exploits the occasional imper-
fections in image morphing that arise due to excessive
movement of the subjects features, or due to swiftly
changing image characteristics such as ambient lighting
or momentary drops in pixel resolutions. Under these
circumstances, the image morphing algorithm cannot find
exact matches of facial features in order to morph the
subjects features accurately, resulting in errors such as a
double chin or a double layered jaw line for that given
set of frames. Such frames may also be prone to semantic
inconsistencies in the Neural Network that was used to
create the deepfake, such as mismatched earrings [14],
which are blatant indicators of a fake video.

• Intrapersonal feature analysis such as, analysis of eyes
of the subject in a deepfake video has been the most
successful and versatile method of detection thus far.
This turns out to be an implicit short coming of GAN
generated fake videos, where it was noticed that GAN
generated video subjects rarely ever blinked [6]. It was
also noticed that the eye movement did not accurately
match the head pose for a GAN generated video. This
is primarily because the GAN used to generate the video
is trained using still images of the subject and as it goes
with most portrait images of people, the eyes are rarely
ever shut. Other intrapersonal features such as head pose,
movement, color of the eyes etc. have been effective flags
that are significantly difficult for GANs to forge, thereby
serve as good indicators for detecting deepfakes [13] [7].

• Speech and audio analysis proves to be yet another
effective tool, that strays away from any of the methods
mentioned above. Studying audio quality and looking for
semantic details in speech are the two main avenues for
determining flags that might predict if an audio stream
is real or forged. These two parameters however, are
not fully incongruous when compared to how image
features are analyzed to detect fakes. Looking for abrupt,
unnatural changes in audio quality, ambient noise that
doesn’t match the setting of the video and semantic errors
such as unnatural pauses, use of uncommon phrases and
the sync between the video and audio feeds are being
studied as potential indicators of deepfakes [2].

III. THE DATABASE

The data sets used for this project are sourced from the
FaceForensics++ Database [cite:FF++], created and provided
by Google JigSaw. This data set is created from a se-
lection of 1000 videos containing 509, 914 sourced from
www.YouTube.com to imitate real scenarios. These are then
manipulated or forged by two computer graphics based meth-
ods (Face2Face and FaceSwap) and two Neural Network
based (DeepFakes and NeuralTextures) approaches[11].

A. FaceSwap

FaceSwap is a graphics based approach to transfer the face
region from a source video to the target. The face region is
detected based on some sparse landmarks. These regions are

then used to morph the source features with a 3D template
model using shape blending techniques. This model is then
fed back onto the target image and a correlation is formed to
minimize the difference between the model and the extracted
landmarks using the textures of the input image. This is
performed for all source and target pairs for all frames in
the video.[11]

B. DeepFakes

DeepFakes have become widely popular in recent times
as a face morphing or swapping framework and are being
studied extensively to develop deep learning algorithms. The
implementation used in the FaceForensics++ data set is the
faceswap github. In this method, two auto encoders and a
shared encoder are used to reconstruct features of source and
target frames respectively. The images are then cropped and
aligned before blending the source features to the target image
using Poisson image editing.[11]

C. Face2Face

This is a computer graphics based re-enactment system that
projects the source expressions while maintaining features of
the target image. This is done by first selecting keyframes
manually. These frames are then used to generate a dense
reconstruction of the face which enables easier simulation
of the face under different illumination conditions or with
changed expressions.[11]

D. NeuralTextures

This is a Neural Network based approach that makes use
of GANs that rely on tracked geometry of the source and
target frames. This information is extracted using Face2Face,
before being fed into the Generative Network that performs
the feature morphing from the source to the target.[11]

Fig. 3. Example from FaceSwap of real (left) and fake (right)

Fig. 4. Example from DeepFake of real (left) and fake (right)



IV. METHODOLOGY

Classifying DeepFakes requires a model that is robust
enough to learn weights from two seemingly similar subsets,
since the morphed frames are composed of human facial
features just like the frames that are not morphed. At a cursory
glance, it is evident that low level features are of little or
no use which implies that our model needs to be deeper. In
this paper we implement at two main approaches to perform
the classification, Convolutional Neural Networks (CNN) and
simple Deep Neural Networks (DNN). We design and train
our models using GPU support to speed up the process.

A. Data Pre-processing

The primary step before building our model is to process
the data in our preferred format, which can then be passed
to the input layer of the model. For pre-processing, we start
by extracting frames from the available videos in an RGB
format, since it is the most common input type to train
Neural Networks for image classification. All parsed frames
are then resized to a 224×224 RGB format in order to ensure
dimensional uniformity in the input layer. Also, due to the
enormity of the data set and constraints on the computation
power at our disposal, we decided to shunt the data set by
picking one in every 60 frames parsed, and then discarding
the rest. This helped in reducing the size of the data set to
make the training process less computationally expensive. To
avoid the problem of exploding gradients, we also normalised
all the images when loading into our model.

B. CNN Model Architecture

The most common architecture for image processing, using
CNNs, is the VGG16 architecture. There is an input layer,
followed by pairs of Convolution layers and Pooling layers
stacked together, depending on how deep the desired model
is. The final convolution layer is followed by a flattening layer,
which is in turn followed by a series of fully connected layers
that plug out the output nodes.

The convolution layers perform kernel convolutions on the
input image, to extract certain properties of the image. For
e.g., a Gaussian kernel performs image smoothing on being
convoluted with the input image, a Sobel filter is sensitive to
edges in the image and so on. Since the image is in the RGB
format, there are 3 kernels, one per channel and the size of
each kernel used is 3× 3.

After each of the convolution layers, a pooling layer is
added to group together features learned in that layer. Max
Pooling is used to take into account the strongest of the learned
features and reject the rest. This output is then passed as an
input to the next convolution layer and the number of such
layers depends on the depth of the desired model.

Each convolution layer may be associated with a padding
that defines how the kernel is convoluted with corner and edge
pixels, and an activation function that deals with altering the
outputs such that the net output encompasses important learned
features. It dies this through deciding which neurons fire in

each layer and thereby controlling which weights are updated
in each layer.

The net output of all the convolution layers however, is
not flat since the image is a multi-channel matrix. For this
reason, the output of the convolution layers is flattened before
passing it as an input to the fully connected layers. These
layers perform in exactly the same manner as a simple Deep
Neural Network (DNN).

Fig. 5. CNN model architecture Iteration 1

Simple DNNs are composed of an input layer, followed by
stacks of fully connected, hidden layers of neurons that finally
feed out to the output layer. Each input node is passed through
each node of the first hidden layer and the corresponding
weights extract the input feature vectors. The output of each
node of the first hidden layer is fed as an input to each node of
the second hidden layer and this process is repeated for each
layer.

The weights are tracked and a bias may be introduced to
lead the net output to converge to a particular vector. The
output nodes are then back-propagated, depending on the error
function associated with the output vector of the first pass. This
permits efficient updating of weights making the model more
accurate for applications such as clustering or classification.



Fig. 6. CNN model architecture Iteration 2

When an optimal model has been trained, it can be tested
with a different set of inputs and the accuracy of classification
is generally commensurate to the training accuracy, since back-
propagation is a strong weight optimization algorithm.

The major drawback with using simple DNNs however, is
that training large data sets drastically affects the computation
cost, since each input node is passed through all hidden layer
nodes in the fully connected setup. This is where CNN has a
comparitive advantage as it shares its weights, allowing it be
much deeper, with the same number of tune-able parameters. It
becomes evident that CNN stacks followed by fully connected
layers perform better.

This CNN based model architecture is robust to learning
image features and the depth of the model ensures feature
maps with higher level features learned. These higher level
features are crucial when it comes to classifying images with
features that are virtually indiscernible on a cursory glance.
The lower level features help identify basic discrepancies that
are equally important for classification.

Fig. 7. CNN model with batch size of 32 and 10 epochs on DeepFake

C. Training on Amazon Web Services

To train and prototype different models, we decided to setup
two different AWS EC2 instances with Nvidia Tesla K80 12
GB GPUs. One was used to run the CNN prototypes on
DeepFake images and the other was used to run FaceSwap
images. ACE cluster was used to quickly prototype these
models and then they were deployed on AWS to train.

V. RESULTS

For our CNN model, we took a similar approach to the
VGG network. Unfortunately due to the limitation of GPU
memory, we could not make it as deep as the VGG. The model
architecture used is shown in figure 5

The results of this model with 224×224 sized images, batch
size of 32 and runs of 10 and 30 epochs gave an accuracy of
about 50% as shown in figure 7 and figure 8 respectively. Due
to lack of more GPU memory, the deeper models could not
be trained with this configuration.

To train it for more epochs and with more filters, the inputs
were resized to 112×112, more convolution layers were added
and the model was trained with 50 epochs to observe how it
performed. This architecture is shown in figure 6 This model
was trained on two different subset of the manipulated data,
DeepFake and FaceSwap to compare the accuracy of the same



Fig. 8. CNN model with batch size of 32 and 30 epochs on DeepFake

model on both these DeepFake types. The model performed
much better on FaceSwap getting about 55% as compared to
50% on DeepFake as seen in figure 10 and figure 9 respectively
.

VI. ANALYSIS

Detecting DeepFakes and distinguishing them from pristine
images involves studying the semantic inconsistencies of the
algorithm that generated the morphed output. The input to our
classifier is available as time series data and since the CNN
model is not capable of registering time series semantics, the
classification relies purely on individual frame semantics. This
is one major drawback of the CNN model and one of the
main reasons that drives the accuracy down, since time series
inconsistencies are some of the strongest outliers with respect
to DeepFakes.

The semantic inconsistencies on a frame-to-frame basis
however are modelled well by our model. The initial convo-
lutional layers are robust at extracting low level features that
may correspond to image features such as edges, boundaries,
sharpness details, illumination etc. These features are valuable
in cases where the morphing is imperfect in terms of inaccu-
rately modelling facial landmarks. The most common example
of this imperfect morphing is a multilayered jawline or facial
boundary. This is the reason for incorporating a smaller num-

Fig. 9. CNN model with batch size of 128 and 50 epochs on DeepFake

ber of neurons in the initial layers and it also makes extracting
the strongest learned feature using MaxPooling much simpler.

The mid-level features are rather unimportant to us since
these usually include subject semantics. In our case, the
mid-level features of both pristine and morphed images are
somewhat the same. Mid-level features in general correspond
to common subject features like components of the face such
as eyes, nose etc. These are present in both morphed and
pristine images with approximately the same probability and
feature space definitions, rendering such features useless to
our classifier.

The higher level features that are learned more significantly
by the deeper layers tend to be essential since these contain
crucial semantic information. These features would correspond
to real world semantics, such as the average distance between
two eyes, presence of two eyes above a single central nose and
average proportionality in position and orientation of mid-level
features. These are crucial for detecting DeepFakes since the
biggest problem with morphing images comes with modelling
and aligning the source features to the target image. This leads
to huge semantic inconsistencies in position and orientation of
crucial subject features.

Despite our model being robust to picking up such crucial
features, some of the main reasons for poor performance of
our model are, small size of the dataset owing to hardware
constraints, frequently changing subjects leading to rapidly



Fig. 10. CNN model with batch size of 128 and 50 epochs on FaceSwap

changing features in pristine images causing a lack of com-
monality in crucial features at the MaxPooling layer, and
changing backgrounds from video to video, causing a further
decrease in the commonality in learned weights. Also, the fact
that the background remained the same in both morphed and
pristine videos may have dominated over low level semantic
discrepancies causing significant misclassification.

VII. CONCLUSION AND FUTURE WORK

As indicated in the results and analysis sections, CNNs and
DNNs do not seem to well represent the feature differences
across a temporal dimension. Since many inconsistencies show
up across different frames of a deep fake video, treating
frames as a sequence will likely provide more insight into
the differences between subsequent frames. The deep neural
network architecture seemingly suited to treating time series
data is the Long-Short Term Memory (LSTM) network.

The changing background is also a big factor that drives the
classification accuracy, so creating a bounding box around the
subject and passing only the contents of the bounding box to
the model should improve the detection accuracy significantly.

The proposed architecture to work with combines the CNN,
LSTM and DNN networks to make a general deep fake
classifier that can trace the discrepancies between frames in
a DeepFake video. An example of such an architecture is

shown in 11. This combined with hardware capability to
process larger datasets should be more robust to classifying
and detecting DeepFakes.

Fig. 11. A LSTM network with CNN input layers and DNN output layers

The deep CNN is for low-level feature extraction from an
image. After the image features are processed they will be
input to the LSTM to be have sequence descriptors computed.
The sequence descriptors will be flattened and passed to the
DNN for the classification task to be performed.

This architecture has been built but errors dealing with shape
mismatches kept popping up during training. Completing the
training and evaluation of this network will be left for future
work.
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