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Abstract—Reinforcement learning (RL) has shown great
promise in enabling robots to perform complex tasks, yet most
approaches train models for individual environments, limiting
their generalization capabilities. In this work, we address this
limitation by developing and evaluating generalized RL models
for multi-environment robotic tasks. Using OpenAI’s Fetch and
Pick Place task as a testing environment, we developed a single
actor that is able to perform both these tasks at a comparable
success rate with OpenAI’s specialized models. The dual-critic
approach achieved high accuracy in multi-task learning by lever-
aging independent critics, while the environment-aware model
provided a stable yet slightly less effective alternative using a
single critic. The generalized model performed much better and
showed lower variance in results when the data being trained was
alternated more frequently. Our findings suggest that generalized
RL agents can be trained to effectively learn and perform across
related environments.

I. INTRODUCTION

Training robotics-related tasks for reinforcement learning
has been an avenue for research in the past decade. A lot of
sophisticated algorithms have been developed to train robots
ranging from wheeled robots to legged robots. A relatively
stable platform for research has been robotic manipulators. We
suspect a reason for the popularity of reinforcement learning
research for robotic manipulators is due to their inherent
presence in industry and academia as one of the most common
robots.

The field of Reinforcement learning is concerned with train-
ing an agent or a model through trial, error, and exploration.
This idea of reinforcement learning profoundly relates to the
way we humans learn to interact with our environment. By
interacting with the environment, we try to extract useful
information. Initially, our actions might not lead to the best
results but that is okay. The idea is not to be perfect on the
first try. If we are, that is great but the main goal is to learn
as much as possible from our interactions. Based on these
interactions, we get a pretty good understanding of how to
perform various tasks. We can also use this understanding to
perform various other tasks of a similar nature or learn them
with relative ease. In trying to do so, we don’t necessarily
forget the learned policy from the previous tasks. We are able
to build a generalized model for all the tasks we learn over
time.
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So far in the class, we have worked with training models
for singular specific tasks. With this final project, we wanted
to explore the field of training generalized reinforcement
learning models. This has various benefits for the robotics
domain. Rather than training a robot individually to perform
different tasks, a generalized model can be created. This would
significantly improve the capabilities of the robots and should
bring up more use cases where robots can be used.

II. BACKGROUND

We started our literature review by reading the call for
research paper published by OpenAl for these robotic tasks[9].
This paper gave us several important insights that helped
narrow down which RL algorithms we could use and guided
our remaining background research. First, we learned that
each model in the robotics fetch environments is multi-goal,
meaning that the arm is instructed to perform an action
targeted towards some arbitrary point in 3-dimensional space.
So, each environment represents an infinite (but limited) space
of sub-tasks. Moreover, the environments have sparse rewards
of 1 or 0, indicating success or failure. The agent only gets
this reward once it reaches the goal or the episode ends, with
no feedback in the meantime.

Second, this paper discussed how different algorithms per-
formed, and presented benchmark results, as shown in Figure
1. Deep Deterministic Policy Gradient (DDPG) was the base
algorithm for all comparisons, which is a policy gradient-based
algorithm optimized for continuous action space tasks[6]. The
advantage of policy-based methods is that they are model free.
So, we can apply them without full knowledge of the problem
or the characteristics of the robots. DDPG simultaneously
learns both the Q-function and the policy. It essentially utilizes
the Bellman equation and the off-policy data (buffer) to learn
the Q-value of the environment. Using this Q-value, it also
learns the optimal policy for the environment. The intuitive
idea is very much related to Q-learning as we discussed in the
class.

DDPG was tested combined with/without the Hindsight
Experience Replay algorithm, and with or without continuous
rewards. The results showed two important insights. First,
certain tasks reached 100% success rate. All models achieved
a 100% success rate in FetchReach, and the combination
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Fig. 1. From Plappert, et. al.: Median test success rate (line) with interquartile range (shaded area) for all four Fetch environments

of DDPG + HER with sparse rewards reached the same in
FetchPush, around 90% in FetchPickAndPlace, around 80% in
FetchPush and around 70% in FetchSlide. From these results,
it is obvious that DDPG + HER with sparse rewards is the
best performing model.

We focused the rest of our background research on under-
standing DDPG and HER so we can tweak them to achieve
our project objectives. Deep Deterministic Policy Gradient
(DDPG) is a type of policy gradient method. Furthermore,
DDPG can be combined with Hindsight Experience Replay
(HER) to significantly increase the performance and reduce
the training time. Hindsight Experience Replay (HER) takes
inspiration from the way we humans learn. The majority of
the RL algorithms extract information based on a sequence of
actions and whether those actions help us achieve the desired
goal or not. If these specific actions don’t help us reach our
goal, they are used as a blind counterexample so very little
learning occurs. HER utilizes the failed episodes by learning
how to get to the end state, assuming it actually was the goal.
For example, if a set of actions did not lead to the desired
position (G) but to some other position (P), HER would try to
extract information from this attempt as if the robot all along
wanted to go to position P. This way, the model can learn from

both successful and unsuccessful attempts.[1]

III. ENVIRONMENT

OpenAl released eight simulated robotics environments a
couple of years ago. All of these environments are multi-goal
environments simulated in the MuJoCo physics engine. Four
of these environments simulated robotic arms and are called
Fetch environments. These simulated arms are 7 DOF and
have a two-fingered parallel gripper[9]. For our experiments,
we considered the following environments

1) Fetch Pushing: A box is placed on a table in front of
the robot. The robot’s goal is to push the box to the
desired goal position indicated with a red sphere. In
this situation, the robot’s fingers are locked to prevent
grasping to force the robot to reach the goal position by
pushing the box.

2) Fetch Pick and Place: A box is placed on a table in front
of the robot. The robot’s goal is to pick the box from
the initial position and to move it to the desired goal
position, indicated with a red sphere. In this situation,
the robot’s fingers are not locked. This allows the robot
to grasp the object to perform the task.

The goal for these fetch tasks is three dimensional and

describes the end-effector position at goal. These environments
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are sparse and binary reward environments. The agent gets a
reward of O if it is able to reach the correct goal position
and -1 otherwise. The observations consist of the absolute
position of the gripper with respect to the environment, the
position of an object with respect to the gripper if present in
the environment and the goal position. The action space is
4-dimensional, where the first three dimensions indicate the
cartesian position of the end effector at the next time step and
the last dimension specifies the distance between the gripper
fingers.[9]

Algorithm 1 Dual-environment DDPG algorithm

Randomly initialize two critic network Qi (s,a|0%*) and
Q2(s,a|0%2) and an actor yu(s|0*) with weights 691, 992
and 6*.
Initialize target network Q' , Q) and ;i with weights 991
991, 992 99z, or' o gr
Initialize replay buffer R; for environment 1 and R; for
environment 2
for episode = 1, M do
Select the environment to get the observation from, the
corresponding replay buffer and the corresponding critic
using the environment selection strategy
Q(s,a|0%) < Q1(s,al0?") and R + R,
or
Q(s,al09) < Qa(s,a|0%2) and R + Ry
Initialize a random process A for action exploration
Receive initial observation state s;
fort=1, T do
Select action a; = pu(s¢|0*) + N; according to the
current policy and exploration noise
Execute action a; and observe reward r; and observe
new state S;41
Store transition (s, at, r¢, S¢41) in R
Sample a random mini batch of N transitions
(84, 04,74, Si+1) from R
Set y; = ri +7Q' (Six1, 1/ (5:41|0)[09)
Update critic by minimizing the loss: L = %
Q(si,ail09))?
Update the actor policy using the sampled policy
gradient:

Zi (yz -

number of different multi-goal environments(n). We restricted
n to two - FetchPickandPlace and FetchPush to ensure our
scope was achievable. Rather than creating our own imple-
mentation from scratch, we decided to modify an existing
implementation. We used the implementation from Tianhong
Dai[3] because it is full-featured and highly readable. We
decided against using the official OpenAl baselines because
the high complexity of the code would make our changes more
difficult to read and understand.

A. Environment Selection Strategy

We trained four different versions of each model design
to represent different ways to interlace the two environments
during training. The first, which we called ‘“PickPlaceThen-
Push”, split the training process into two parts by training
exclusively on Fetch Pick and Place (environment 1) for the
first half of training and then exclusively on Fetch Push
(environment 2) for the second half. The second approach was
the same as the first but in reverse order. We aptly named
it “PushThenPickPlace”. The third approach switched which
environment was being used for training at every epoch. So,
the first epoch would use Fetch Pick and Place (environment
1), the second epoch would use Fetch Push (environment 2),
and so on. We named this approach “Epochlnterlaced”. Our
final approach switched which environment was being used
for training at every cycle and was named “Cyclelnterlaced”.
All of our models performed 50 cycles at every epoch. All
result visualizations were smoothed to make trends easier to
discern.

B. Baseline

Our baselines used an unmodified implementation of the
DDPG + HER algorithm. To avoid sampling bias, we used
two separate HER and replay buffers to store rollouts for the
two environments.

C. Design of multi-environment agent

DDPG uses the critic networks to identify how good a
certain policy is for a particular environment and the actor-

Voud == %ZVQQ(S,an)\S:Si amp(si) Vo pu(s|0")| s networks give the desirable action to execute based on the

Update the target networks:
09" — 769 + (1 —7)09
0" — 70" + (1 — 7)o"

end for
end for

IV. METHODOLOGY

In this project, our primary goal was to modify the standard
DDPG + HER algorithm to be able to train with an arbitrary

current observation. Since we are training a generalized model,
we had to stick with using just one-actor in the approaches
we decided to pursue. We maintained two different HER and
replay buffers for both the environments.

1) Dual-critic: Since the critic network essentially esti-
mates how good a policy is for a given observation, we decided
on the approach of using two different critic networks, each
corresponding to the different environments. The intuition is
to train the critic networks for their respective environments
and use the feedback from these networks to train the actors
such that the actor can generalize the policy for both of the
environments. The pseudocode for this approach is present
algorithm 1.
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Fig. 2. Success Rate of the two Environments with PickPlaceThenPush and PushThenPickPlace Training Mode
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Fig. 3. Success Rate of the two Environments with Epochlnterlaced and Cyclelnterlaced Training Mode over Epochs

2) Environment-aware: In this approach we used one critic
for both environments. We modified the observation to make
the model aware of which environment was being processed by
injecting an extra parameter into the observation. This param-
eter, referred to as env_id in the code, was 0.0 for environment
1 and 1.0 for environment 2. With the added parameter, we
expected the agent to be capable of differentiating the policy
for each environment.

D. Experiments

We performed the following experiments:

1) For our baseline models (unmodified DDPG + HER):
a) PickPlaceThenPush with 50 epochs
b) PushThenPickPlace with 50 epochs
c) Epoch Interlaced with 200 epochs
d) Cycle Interlaced with 200 epochs

2) For our dual-critic approach:
a) PickPlaceThenPush with 50 epochs
b) PushThenPickPlace with 50 epochs
c) Epoch Interlaced with 50 epochs
d) Cycle Interlaced with 200 epochs

3) For our environment aware approach:

a) Cycle Interlaced with 200 epochs

We used the same model hyperparameters as the baseline
OpenAl implementation. We trained each model for 50 epochs
on an 8-core, Intel-based Google Elastic Compute virtual
machine instance.

V. RESULTS AND ANALYSIS

A. Baselines

For both PickPlaceThenPush and PushThenPickPlace, we
expected the model to perform well for the tasks (environment
2) it trained on the latter part of the training. Our hypothesis
was shown to be correct, as evident from the results discussed
below.

1) PickPlaceThenPush for 50 Epochs: In Figure 2 at epoch
25, we see a sudden dip in the performance on the Fetch-
PickAndPlace task which was being trained so far. As the
training process approaches 50 epochs, the FetchPickAndPlace
performance keeps going down whereas the performance for
FetchPush starts increasing.

2) PushThenPickPlace for 50 Epochs: The PushThenPick-
Place behaved similarly to the PickPlaceThenPush training
mode but in reverse order, as expected. In Figure 2 at epoch 25,
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Fig. 5. Success Rate of Dual-Critic PushThenPickPlace Versus the Baseline over Epochs

we see a sudden dip in the performance on the FetchPush task
which was being trained so far. As training nears epoch 50,
this performance keeps decreasing whereas the performance
for FetchPickAndPlace increases.

3) Epochinterlaced for 200 Epochs: By switching the en-
vironment being trained at each epoch, the model had higher
variances in accuracy between epochs and took longer than
PickPlaceThenPush and PushThenPickPlace to get similar
results. We observe the success rate over 200 epochs in Figure
3. However, in contrast to those approaches, the performance
increases over time for both environments. Ad the end of 50
epochs, the success rate of FetchPickAndPlace and FetchPush
was 0.5625 and 0.9874 respectively. At the end of 200 epochs,
the score was 0.8875 and 1.0 respectively.

4) Cyclelnterlaced for 200 Epochs: Each epoch consists
of 50 cycles. By switching the environment at every cycle,
the model had higher variances in accuracy as compared to
PickPlaceThenPush and PushThenPickPlace but lower com-
pared to the Epochlnterlaced training mode. It also took
longer than PickPlaceThenPush and PushThenPickPlace to get
similar results but, as we can see in Figure 3, was significantly
quicker compared to the Epochlnterlaced training mode.

B. Dual-critic agent

1) FetchPickAndPlace then FetchPush for 50 Epochs: We
observed that, similarly to the baselines, the PickPlaceThen-
Push approach resulted in the agent learning only one of the
two environments at either half of the training and unlearning
the other. As we can see in Figure 4, the agent achieved
a success rate of 0.8875 at FetchPickAndPlace-v1l at epoch
24 which was reduced to 0.325 at the end of the training.
Similarly, the agent had a score of 0.225 at epoch 24 for
FetchPush-v1 which increased to 1.0 by the end of the training.
The dual-critic model performed worse than the baseline. We
believe this happens because, in the dual-critic model, the new
critic has to be trained from scratch starting at epoch 25. Since
the two environments are similar the single-critic approach
can reuse some of its existing training and converge quicker.
However, both models achieve the same results.

2) FetchPush then FetchPickAndPlace for 50 Epochs:
The results of this experiment follow the same pattern from
the previous. FetchPush, which was trained first, achieved a
success rate of 0.9875 at epoch 24 while at the same epoch
FetchPickAndPlace had a success rate of 0.25 as we can see
in Figure 5. At epoch 50, FetchPush dropped to a success rate
of 0.4625 and FetchPickAndPlace rose to 0.6875. We observe

Page 5 of 8



FetchPickAndPlace-v1 Success Rate
— Dual Critic 50 Epochs Epochinterlaced

FetchPush-v1 Success Rate
— Dual Critic 50 Epochs Epochinterlaced

0.6
05 0.8
0.4 0.6
0.3
0.4
0.2
0.2
0.1
Ste| St
0 P 0 ep
0 10 20 30 40 50 0 10 20 30 40 50
Fig. 6. Success Rate of Dual-Critic EpochInterlaced Versus the Baseline over Epochs
FetchPickAndPlace-v1 Success Rate FetchPush-v1 Success Rate
1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
Ste| Ste
0 P 0 p
0 50 100 150 0 50 100 150

Fig. 7. Success Rate of Dual-Critic CycleInterlaced Versus the Baseline over Epochs

that the baseline reached a significantly higher FetchPickAnd-
Place success rate of 0.9 which is what the original OpenAl
baseline model achieved. Moreover, we notice the baseline
retained a much higher FetchPush score for the vast majority
of the training process while also improving at FetchPickAnd-
Place faster. So, the environments share various characteristics.
Intuitively, it is easy to understand that the FetchPickAndPlace
tasks that have a target location on the platform surface can
be solved by simply performing FetchPush.

3) Epoch Interlaced Training with 50 Epochs: This exper-
iment trained for both environments almost simultaneously
by altering which environment was being sampled at every
epoch. In Figure 6 we observe that the success rate for both
environments trends upwards. For the dual-critic model, it
reaches 0.5 for FetchPickAndPlace and 0.7252 for FetchPush
at the end of epoch 50. However, the model shows a very high
variance for FetchPush since the unsmoothed data fluctuates
from 0.3 to 1.0 during the last 10 epochs. This result is
explained by the fact that the independent critics lead to
high values for the gradient update. Last, we observe that the
baseline performed much better with dramatically less variance
in FetchPush, with a final success rate of 1.0.

4) Cycle Interlaced with 200 epochs: This experiment
switches the environment at every cycle during training. Each
epoch consists of 50 cycles, so this method of training in-
terlaces the environments much more tightly than the epoch-
based method. We also extended the training time to 200
epochs to make sure the models fully converge.

We observe in Figure 7 that using this method, both the
baseline and the dual-critic agent reach the benchmark success
rate achieved by the OpenAl models [9] for both environments
at the same time. This is a very surprising result that shows
that the two environments are so closely related that an agent
can learn to perform both without being explicitly given
which environment is fed as an input. It is worth noting
that the Cyclelnterlaced method produces significantly less
variance than all previous methods. The baseline outperforms
the dual-critic method for the first 70 epochs but then is
slightly surpassed by it. At epoch 200, the baseline reaches
FetchPickAndPlace and FetchPush success rates of 0.9 and
1.0 respectively while the dual-critic method reaches 0.9375
and 1.0 respectively.

C. Environment-aware agent
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1) Cyclelnterlaced for 200 Epochs: As shown in Figure 8§,
the environment-aware agent initially performed better than
the dual-critic model but after epoch 30 it fell behind both
the baseline and the dual-critic model. Past epoch 30 it
consistently performed worse than the other two but generally
converged to the same success rate. The final result was 0.8625
and 1.0 for FetchPickAndPlace and FetchPush respectively.
For FetchPickAndPlace, performance fell short of the baseline
by 3.375% and the dual-critic model by 7.5%. However, this
agent showed more predictable and stable behavior during the
video demonstration. Specifically, the baseline actor would
oscillate the robot fingers when not grasping the cube. The
environment-aware agent did not show this behavior.

Overall, we could attribute the lower performance to the
exponentially increased state space due to the extra input
parameter. The curse of dimensionality may have prevented
this agent from maximizing its performance in PickAndPlace.

VI. CONCLUSION

Through this project, we wanted to understand and evaluate
the possibility of training generalized tasks for robotic environ-
ments. We had not expected the baselines to perform as well as
the Dual Critic and Environment Aware approaches. We think
one reason for this result is the similarity between the two tasks
we considered: FetchPush and FetchPickAndPlace. Intuitively,
we can easily understand how all the FetchPickAndPlace
tasks with the target location on the platter can be done as
FetchPush. We believe this is the main reason why the base-
lines scored similar success rates as the OpenAl benchmarks
[9], Dual Critic approach, and Environment Aware Approach.
From the results, it can be clearly seen that generalized agents
can be created for FetchPush and FetchPickAndPlace tasks. It
would be an interesting avenue of research to extrapolate this
study and examine how generalized agents would perform on
other Fetch robotics environments.

VII. FUTURE WORK

Within the scope of this project, we aimed to develop a
generalized model for only a pair of tasks. Consequently,

our modified algorithm is tailored towards training these
specific two tasks. The next step for this project should be
to create a generalized training algorithm capable of handling
‘n’ number of environments. From our discussions, we realized
that FetchPush is essentially a subset of FetchPickAndPlace.
All the pick and place tasks with a goal location on the platter
can also be achieved by pushing the objects. We are interested
in exploring how well these generalized models can be trained
for tasks that overlap less. An example would be training on
FetchPickAndPlace and FetchSlide. We can also use a similar
approach to evaluate the similarity between two tasks from
the perspective of how models can generalize them. This can
be done by making unique pairs from the 4 tasks and then
comparing the results of the trained generalized models. It
would also be interesting to train the generalized models on
Hand environments, which were shown to be more complex
than the Fetch environment in OpenAl’s call for research [9].
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